electrohouse
AXWELL
- 16 Oktober 2010
- 26
- 6
Hallo meine Freunde. Da ich in der Schule eine zeitlang gefehlt habe und wir ein neues Thema angeschnitten haben, wollt ich auf diesen Wege fragen, ob ich das Thema "verstanden" habe bzw. die Aufgabe richtig gelöst habe.
Hier der folgende Text :
Meine Rechnung dazu :
1. Jahr
geg: p=4,25%; n=1 Jahr; Kn1= 85.000 EUR
ges: K01
Kn1=K01/(1+p/100)^n
85.000= K0/1,0425 | /1,0425
K01= 81.534,77
4. Jahr
geg: p= 4,25%; n= 4 Jahre; Kn2= 125.000 EUR
ges: K02
Kn2=K02/(1+p/100)^n
125.000= K02/1,18 | /1,18
K02= 105.932,20
6. Jahr
geg: p= 4,25%; n= 6 Jahre; Kn3= 73.000 EUR
ges: K03
Kn3= K03/(1+p/100)^n
73.000=K03/1,28 | /1,28
K03= 57.031,25
9. Jahr
geg: p= 4,25%; n= 9 Jahre; Kn4= 125.000 EUR
ges: K04
Kn4=K04/(1+p/100)^n
92.000= K04/1,45 | /1,45
K04= 63.448,28
K0 insg.= K01+K02+K03+K04
K0 insg. = 307.946,5
Antwort: ......
Ich wäre euch sehr dankbar, wenn mir jemand das korrigieren würde, falls es Fehler enthalten sollte.
gruß
Hier der folgende Text :
Über welche einmalige Summe muss man jetzt verfügen, um folgende Zahlungen bei einem Zinssatz von 4,25 % fristgerecht leisten zu können: 85.000 EUR sofort, 125.000 EUR nach 4 Jahren, 73.000 EUR nach weiteren 2 Jahren, 92.000 EUR nach nochmals 3 weiteren Jahren.
Meine Rechnung dazu :
1. Jahr
geg: p=4,25%; n=1 Jahr; Kn1= 85.000 EUR
ges: K01
Kn1=K01/(1+p/100)^n
85.000= K0/1,0425 | /1,0425
K01= 81.534,77
4. Jahr
geg: p= 4,25%; n= 4 Jahre; Kn2= 125.000 EUR
ges: K02
Kn2=K02/(1+p/100)^n
125.000= K02/1,18 | /1,18
K02= 105.932,20
6. Jahr
geg: p= 4,25%; n= 6 Jahre; Kn3= 73.000 EUR
ges: K03
Kn3= K03/(1+p/100)^n
73.000=K03/1,28 | /1,28
K03= 57.031,25
9. Jahr
geg: p= 4,25%; n= 9 Jahre; Kn4= 125.000 EUR
ges: K04
Kn4=K04/(1+p/100)^n
92.000= K04/1,45 | /1,45
K04= 63.448,28
K0 insg.= K01+K02+K03+K04
K0 insg. = 307.946,5
Antwort: ......
Ich wäre euch sehr dankbar, wenn mir jemand das korrigieren würde, falls es Fehler enthalten sollte.
gruß
Zuletzt bearbeitet: